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abstract
BACKGROUND: Pyridoxine-dependent epilepsy is a rare
 autosomal recessive epileptic encephalopathy caused by
antiquitin (ALDH7A1) deficiency. In spite of adequate seizure control, 75% of patients suffer intellectual develop-
mental disability. Antiquitin deficiency affects lysine catabolism resulting in accumulation of a-aminoadipic
semialdehyde/pyrroline 60 carboxylate and pipecolic acid. Beside neonatal refractory epileptic encephalopathy,
numerous neurological manifestations and metabolic/biochemical findings have been reported. METHODS AND
RESULTS:We present a phenotypic spectrum of antiquitin deficiency based on a literature review (2006 to 2015) of
reports (n ¼ 49) describing the clinical presentation of confirmed patients (n > 200) and a further six case vi-
gnettes. Possible presentations include perinatal asphyxia; neonatal withdrawal syndrome; sepsis; enterocolitis;
hypoglycemia; neuroimaging abnormalities (corpus callosum and cerebellar abnormalities, hemorrhage, white
matter lesions); biochemical abnormalities (lactic acidosis, electrolyte disturbances, neurotransmitter abnormal-
ities); and seizure response to pyridoxine, pyridoxal-phosphate, and folinic acid dietary interventions. DISCUSSION:
The phenotypic spectrum of pyridoxine-dependent epilepsy is wide, including a myriad of neurological and
systemic symptoms. Its hallmark feature is refractory seizures during the first year of life. Given its amenability to
treatment with lysine-lowering strategies in addition to pyridoxine supplementation for optimal seizure control
and developmental outcomes, early diagnosis of pyridoxine-dependent epilepsy is essential. All infants presenting
with unexplained seizures should be screened for antiquitin deficiency by determination of a-aminoadipic sem-
ialdehyde/pyrroline 60 carboxylate (in urine, plasma or cerebrospinal fluid) and ALDH7A1 molecular analysis.
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Introduction

Pyridoxine-dependent epilepsy is a rare autosomal
recessive disorder, classically presenting with neonatal
seizures that can be controlled with pharmacologic doses of
pyridoxine.1,2 Since the 1950s, pyridoxine-dependent epi-
lepsy was diagnosed clinically with vitamin B6 as a diag-
nostic trial.3 The reported incidence varies from 1:20,0004

to 1:276,0005 and 1:783,000.3 In 2006 a defect in the
lysine degradation pathway (ALDH7A1 encoding a-amino-
adipic semialdehyde dehydrogenase, also known as anti-
quitin [ATQ]) was identified as the genetic basis of this rare
epilepsy.6 Accumulation of a-aminoadipic semialdehyde (a-
AASA)/L-D1-piperidine-6 carboxylate (P6C) results in
chemical inactivation of pyridoxal phosphate (PLP).6 These
insights unveiled novel diagnostic biomarkers and the
lysine degradation pathway as adjunct treatment targets7-10

(Fig 1). To compile an overview of possible clinical pre-
sentations,11 we performed a literature review to collect
data on reported pyridoxine-dependent epilepsy patients.
Case vignettes are presented to illustrate the clinical
spectrum.

Materials and Methods

This study was approved by the Ethics Boards at British Columbia
Children’s and Women’s Hospital, University of British Columbia (Can-
ada) and the University of Colorado (United States of America). Parents
provided informed consent for publication of the case vignettes.

For the literature review, we searched PubMed (http://www.ncbi.
nlm.nih.gov/pubmed; 2006 to October 2015) using a combination of
the following terms (restricted to humans): pyridoxine-dependent epi-
lepsy (PDE), pyridoxine-dependent seizures, Antiquitin, ATQ, a-amino-
adipic semialdehyde dehydrogenase, ALDH7A1, a-aminoadipic
semialdehyde, and a-AASA. For the selection of articles, we applied the
following criteria: (1) publication date after the discovery of ALDH7A1
mutations as the cause of pyridoxine-dependent epilepsy in 20066; (2)
FIGURE 1.
Role of antiquitin (ALDH7A1) in the catabolic pathway of lysine.
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publication language English; and (3) reporting one or more pyridoxine-
dependent epilepsy patient(s) with confirmed ATQ deficiency, including
a description of the clinical symptoms.

We subsequently extracted clinical, biochemical, and neuroimaging
data/symptoms from the selected articles. For each of the reported
symptoms, the following classification was made (Fig 2): either “clas-
sical,” defined as the typical or core phenotypic presentation (reported in
the vast majority of patients) or “spectrum,” defined as less common or
atypical (reported in minority of patients). The “spectrum symptoms”
were organized into different categories: neurologic, biochemical, neu-
roimaging findings; seizure onset; seizure type; and response to medi-
cation other than pyridoxine, behavioral/psychiatric, and “other”
symptoms. We indicated the ultrarare symptoms, i.e., those reported in
less than five patients in the literature. To overcome the limitations of
our PubMed search and subsequent potential “reporting bias” (i.e., that
only a selection of pyridoxine-dependent epilepsy patients is published
as a case report), we also asked clinicians (all nine coauthors) with
expertise and experience in ATQ deficiency to review and edit the clinical
spectrum generated by the literature review, i.e., whether any symptoms
were missing or unjustified and provide illustrative case vignettes.

Results

Of the 246 articles generated by the PubMed search, 49
met the outlined criteria, including 266 descriptions of
patients with confirmed ATQ deficiency.5,7,8,11-55 Figure 2
provides a comprehensive visual overview of the present-
ing clinical and biochemical features of patients reported in
the literature.

Patient vignettes

One or more of the authors follow each of the patients
described below. Although Patients 2 and 4 are novel, i.e.,
have not previously been reported in the literature, we have
expanded on the remaining published reports to include
more recent information.

Patient #1: lactic acidosis and cardiomyopathy mimicking
mitochondrial disease

This girl was born at 33 weeks, then developed recurrent
apnea; distended abdomen; feeding intolerance; lactic
acidosis; hyponatremia; and increased urinary excretion of
lactate, ketone bodies, and dicarboxylic acids on day one.12

On day ten, choreoathetoid movements of arms and legs,
orofacial twitches, and burst suppression pattern on elec-
troencephalograph (EEG) were unresponsive to phenobar-
bital but improved after the administration of 100 mg of
pyridoxine intravenously. A magnetic resonance imaging
(MRI) revealed bilateral temporal lobe hemorrhages and
thalamic changes. ATQ deficiency was confirmed by ho-
mozygosity for a known pathogenic sequence change
(c.1279G>C; p.E427Q) in ALDH7A1. During the first year of
life, she remained seizure free on oral pyridoxine (15 to
30 mg/kg/day). At age 11 months, a lysine-restricted diet
was initiated with addition of arginine at age 6.3 years. This
regimen has been well tolerated, with pipecolic acid
normalizing and a-AASA dropping below the detection
limit; at age seven years of age, aside frommildmotor delay,
she demonstrates normal psychomotor development.7,8

Patient #2: recurrent burst suppression on oral pyridoxine and
periventricular leukomalacia

This girl was born spontaneously at 34 weeks gesta-
tion, then exhibited generalized myoclonus, particularly
ersity of British Columbia April 29, 2016.
n. Copyright ©2016. Elsevier Inc. All rights reserved.
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FIGURE 2.
Overview of the symptoms reported in the literature for patients with ATQ deficiency. Classical symptoms (center circle): clinical and biochemical
symptoms observed in the vast majority patients. Spectrum symptoms (boxes): symptoms present in the minority of patients. *Ultrarare symptoms, re-
ported in less than five literature cases. 1Unidentified peak in the HPLC chromatogram for CSF monoamine neurotransmitter analysis in ATQ deficiency
patients. 2Potentially normalize on pyridoxine therapy. a-AASA, a-aminoadipic semialdehyde; ADHD, attention deficit hyperactivity disorder; ATQ, anti-
quitin; CSF, cerebrospinal fluid; HPLC, high performance liquid chromatography; GABA, gamma-aminobutyric acid; OCD, obsessiveecompulsive disorder;
P6C, L-D1-piperidine-6 carboxylate.

C.D.M. van Karnebeek et al. / Pediatric Neurology xxx (2016) 1e7 3
of the diaphragm, lactic acidosis (9.8 mmol/L, reference
range < 2.1), and an EEG illustrating a high-voltage burst
suppression pattern on day one. Therapy with IV pheno-
barbital and lidocaine was ineffective, whereas one
dosage of intravenous pyridoxine 100 mg resulted in
immediate cessation of myoclonus on day two. An MRI
brain scan on day eight indicated a small subependymal
hemorrhage in the right hemisphere and diffuse punctate
bleeding in the periventricular white matter. ATQ defi-
ciency was confirmed by increased pipecolic acid in ce-
rebrospinal fluid (CSF; 11.6 mmol/L, reference range ¼ 0.00
Downloaded from ClinicalKey.com at Universi
For personal use only. No other uses without permission. C
to 0.10) and in plasma (32.7 mmol/L, reference range ¼ 0.1
to 7.0), and homozygous mutations (c.1286G>T; p.S429L)
in ALDH7A1.

While on pyridoxine (30mg/kg/day) and folinic acid (3 to
5 mg/kg/day), breakthrough seizures occurred during
febrile episodes at nine and 21 months of age. AnMRI at age
14 months indicated widened extracellular spaces and
periventricular leukomalacia with diffuse whitematter loss,
a more severe than the usual evolution observed in ex-
premature patients. At age three years, she has mild delay
in gross and fine motor skills.
ty of British Columbia April 29, 2016.
opyright ©2016. Elsevier Inc. All rights reserved.
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Patient #3: myoclonia with onset beyond the neonatal period and
folinic acideresponsive seizures

This boy with an unremarkable perinatal history had
episodes of eye deviation, jerking movements of arms and
legs accompanied by irritability, and crying at age
2.5 months. In retrospect, episodic jerking of the eyes and
legs had been noticed since birth. The results of EEG, per-
formed for the first time after an initial phenytoin and
phenobarbital load, was normal, whereas abnormal move-
ments disappeared only after a dose of oral pyridoxine
(100 mg twice daily). At 4.5 months, he was diagnosed with
“folinic acideresponsive seizures,” based on the presence of
“peak X” in his CSF.13 At age 12 months, breakthrough sei-
zures occurred after he missed several dosages of pyridox-
ine. ATQ deficiency was diagnosed based on elevated
plasma pipecolic acid (7.9 mmol/L, normal < 3), elevated
urinary a-AASA (32.7 mmol/L; reference range < 1), and
compound heterozygous mutations in ALDH7A1 (c.750G>A,
p.V250V/c.1195G>C, p.E399Q).11 Dietary lysine restriction
and oral arginine supplementation as adjunct to pyridoxine
and folinic acid, began at three and eight years, resulted in
decreased CSF a-AASA and significant improvements in
behaviors and language skills.7,8

Patient #4: insomnia and continuous choreoathetotic movements
mimicking neonatal drug withdrawal

This boy was born at 38 weeks (Apgar scores 6 and 8;
cord blood pH ¼ 7.09), developed tachypnea, motor hy-
perexcitability, choreoathetotic movements, and oral ste-
reotypies within the first hours of life. He was hyperalert
and manifested insomnia for the first 48 hours of life. Based
on a preliminary diagnosis of neonatal substance with-
drawal syndrome, he received morphine, which was inef-
fective. Lactic acidosis (pH 7.11; BE ¼ �17 mmol/L; lactate ¼
10.8 mmol/L) and subsequent pyridoxine-responsive status
epilepticus prompted the diagnosis of ATQ deficiency,
which was demonstrated by elevated plasma pipecolic acid
(52.3 mmol/L, reference range < 2.5) and a homozygous
mutation in ALDH7A1 (c.1195G>C; p.E399Q).

Numerous breakthrough seizures occurred on oral pyri-
doxine (30 to 35 mg/kg/day). Dietary lysine restriction was
initiated at age 40 months. At six years of age, he has a
squint, poor oral motor coordination with drooling, and
attention deficit disorder.

Patient #5: early-onset myoclonia and delayed response to
pyridoxine

This boy was born at 39 weeks with normal Apgar
scores.He developed myoclonia during the first two days
of life but had no evidence of epileptic activity on EEG.
Cranial computed tomography and MRI revealed a small
hemorrhage in the left and right occipital and temporal
regions. From day 11 onwards, on treatment with
phenobarbital, he demonstrated hypertonia of the lower
extremities, sunset phenomenon of the eye, hyperalert-
ness, insomnia, poor oral intake, and burst suppression
EEG and was unresponsive to 100-mg pyridoxine intra-
venously. The myoclonia resolved, and his EEG improved
on oral topiramate, folinic acid (5 mg/day), and pyridoxine
(15 mg/kg/day). Insomnia, jitteriness, and myoclonus
recurred one week after discontinuation of pyridoxine and
folinic acid. No improvement was observed after
Downloaded from ClinicalKey.com at Univ
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reinstitution of folinic acid, but a single, oral dose of pyr-
idoxine 50 mg was followed by a marked decrease in tone,
decrease in startle, and absence of myoclonus. ATQ
deficiency was confirmed by elevated plasma pipecolic
acid levels (14.4 mmol/L, reference ¼ 0.1 to 3.9)
and compound heterozygous mutations in ALDH7A1
(c.248G>A/c.1208C>T; p.G83E/p.P403L). At six months,
he exhibited mild motor delay and hypotonia.14

Patient #6: infantile epileptic encephalopathy responsive to
pharmacologic monotherapy and cerebral folate deficiency

This girl developed seizures at age five days of age which
were initially responsive to conventional pharmacotherapy.
At 12 months of age, she experienced status epilepticus.
Seizure control was achieved with levetiracetam. At the age
of 11 years, she had intellectual disability and expressive
language delay. Her MRI showed left mesial temporal
sclerosis, mild periventricular leukomalacia, and bilateral
cerebellar volume loss.8

Her younger sister, who had a similar presentation of
neonatal seizures, was diagnosed with ATQ deficiency
(p.G274E/p.S317L) through an epilepsy gene panel8 (Patient
2) at age 9 months. Elevated plasma aeAASA confirmed the
same diagnosis in this patient. Treatment with pyridoxine
100 mg by month three times per day (10 mg/kg/day) was
initiated. She was not compliant on lysine-restricted diet.
CSF studies obtainedwhile on this regimen showed elevated
a-AASA levels at 0.42 mmol/L (reference range < 0.1) and
reduced 5-methyltetrahydrofolate at 29 nmol/L (reference
range ¼ 40 to 210). Notably, neither this CSF sample nor the
CSF sample investigated nine years earlier for monoamine
neurotransmitter metabolites identified peak(s) X, charac-
teristically associated with ATQ deficiency.13 Conversely, 5-
methyltetrahydrofolate was normal (61 nmol/L).

Discussion

More than 200 patients with genetically confirmed
pyridoxine-dependent epilepsy have been described in the
literature since the identification of ALDH7A1 as a causative
gene, althoughmanymore patients are diagnosed in clinical
practice. Our review highlights pyridoxine-dependent epi-
lepsy/ATQ deficiency as an epileptic encephalopathy with a
complex clinical and biochemical presentation. Classical
symptoms such as intractable neonatal seizures responsive
to pyridoxine are well known to neonatologists and neu-
rologists, whereas numerous neuroradiologic, systemic, and
biochemical features might provide rise to different differ-
ential diagnoses and thus delay the final diagnosis. Mills
et al.11 provide comprehensive data on symptom frequency
in patients diagnosed in their institution. Our goal was to
provide an overview of the type of symptoms so as to depict
the phenotypic spectrum of this rare condition. We were
unable to provide reliable information on the true fre-
quency of the various symptoms, reasons for which include
the following (1) reporting bias (i.e., not all those diagnosed
are reported, often only patients with rare or unusual
phenotypes); (2) incomplete data on patient phenotypes in
the literature (i.e., not all cases are comprehensively
described and some symptoms might not have been re-
ported); and (3) diagnostic bias (i.e., we only screen for this
condition in patients with the classic presentation and thus
ersity of British Columbia April 29, 2016.
n. Copyright ©2016. Elsevier Inc. All rights reserved.
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miss the diagnosis in atypical presentations). The latter may
change now that epilepsy gene panels and genome-wide
sequencing are frequently ordered in the clinical setting.

Neonatal onset of seizures unresponsive to pharmacologic
treatment is the most common denominator for pyridoxine-
dependent epilepsy/ATQ deficiency. More specific associa-
tions include myoclonia, hyperalertness, sleeplessness, poor
feeding, and vomiting. As illustrated by Patient 4, symptoms
can mimic substance withdrawal. Because PLP acts as a
cofactor formore than 140 enzymatic reactions,56 its reduced
availability explains the numerous metabolic derangements,
associated with pyridoxine-dependent epilepsy/ATQ defi-
ciency. Aside from hypoglycemia and lactic acidosis, elec-
trolyte disturbances, coagulopathy, abnormal plasma, and
CSF amino acid concentrations have been observed, which
clearly assigns pyridoxine-dependent epilepsy/ATQ defi-
ciency to the group of metabolic epileptic encephalopathies.

Seizure types vary as illustrated in Fig 2, and onset
beyond the neonatal period is uncommon although does
occur exemplified by Patient 3. No literature reports were
identified describing patients who developed seizures for
the first time at age 12 months or older. Such atypical forms
may well have been missed due to testing bias; with the
advent of genome-wide sequencing, late-onset patients of
ATQ deficiency might well be diagnosed in the future.

ATQ deficiency presents with a variety of neurologic
symptoms and neuroimaging abnormalities varying from
neonatal intracerebral hemorrhage, connatal hydrocepha-
lus and subependymal cysts, to ventriculomegaly, hydro-
cephalus, and hypoplasia of the corpus callosum.12,15-17 In
some patients, cerebral heterotopia and cortical malfor-
mation may explain the intractable nature of the epi-
lepsy.11,18 As demonstrated in Patient 2, loss of white matter
after an initial insult in the neonatal period may be pro-
gressive, to a degree that exceeds the usual evolution of
periventricular malacia observed in prematurity/perinatal
asphyxia. Behavioral abnormalities become apparent dur-
ing early childhood only but were included in Fig 1 because
these were prominent in patients whowere diagnosed later
in life, i.e., missed on initial presentation with the classical
early-onset seizures.

Furthermore, as exemplified by Patient #1,12 the diag-
nosis of ATQ deficiency can be challenged by themany other
biochemical/metabolic abnormalities that can be present
during the acute phase.

Response to folinic acid and identification of a charac-
teristic yet unidentified metabolite (Peak X) in the CSF,
previously led to the assumption that folinic acid-
eresponsive seizures are a separate clinical entity.13 Only
recently has it been shown that folinic acideresponsive
seizures and ATQ deficiency are allelic.14 The results of Pa-
tient #6 indicate that the peak(s) observed on monoamine
neurotransmitter analysis are not fully sensitive for ATQ
deficiency and that a-AASA in blood, urine, or CSF and/or
molecular analysis are essential. The identification of low 5-
methyltetrahydrofolate in CSF suggests that this might be
assessed in patients with pyridoxine-dependent epilepsy,
and supplementation with folinic acid could be considered
if the value is low, although clear evidence of benefit for this
patient population is currently lacking.

As illustrated by Patient #5 and 14% of patients reported
by Mills et al.,11 not all children respond immediately to
Downloaded from ClinicalKey.com at Universi
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pyridoxine. Thus clinical diagnosis should be focused on
biochemical metabolites and not solely on response to pyr-
idoxine, which has incomplete sensitivity and specificity.

In spite of effective treatment of seizures with pyridox-
ine, approximately 70% of affected individuals with
pyridoxine-dependent epilepsy suffer developmental
delay/intellectual disability. New treatments targeting the
metabolic defect in lysine degradation,7,8 potentially
improve long-term developmental and cognitive outcomes,
and the preliminary data are promising. This review of
clinical manifestations may help the clinician to identify
patients at risk, particularly if they present with atypical/
rare manifestations. Collaborative, observational studies are
underway with the PDE Patient Registry (wwws.pdeonline.
org), an active data collection study, to better understand
the clinical spectrum and long-term outcomes associated
with the various available treatment modalities.

Overall, pyridoxine-dependent epilepsy due to ATQ
deficiency is a treatable cause of epilepsy and intellectual
disability.57 Diagnosis of ATQ deficiency is established by
determination of a-AASA/P6C in blood or urine (see https://
www.genetests.org/ for an overview of clinical laboratories
providing this test). Elevation of a-AASA/P6C persists on
treatment with pyridoxine. Thus patients at risk should
immediately be treated with pyridoxine orally or intrave-
nously, and diagnostic urine and blood samples can be
taken any time after initiation of treatment.1 Pipecolic acid
is another diagnostic marker.58 However, although analysis
of this marker is widely available, its specificity for the
diagnosis of ATQ deficiency is limited. Molecular analysis of
the ATQ gene (ALDH7A1) is performed for diagnostic
confirmation. If sequencing does not reveal point muta-
tions, molecular testing for insertions, copy number vari-
ants, and intronic variants should be performed.59 To date,
more than 80 mutations have been reported within the 18
exons of ALDH7A1 on the Human Gene Mutation Database
web site. The missense mutation, p.E399Q in exon 14, oc-
curs in various populations and accounts for about 30% of
published alleles.11,23,60 If biochemical/molecular analyses
are negative, then other genetic causes of pyridoxine-
responsive seizures should be considered, including (but
not limited to) pyridoxamine 5-0-phosphate oxidase defi-
ciency (MIM# 610090)61 and hypophosphatasia due to
alkaline phosphatase deficiency (MIM #241500).62

The wide range of clinical presentations of pyridoxine-
dependent epilepsy that hamper diagnostic recognition of
this treatable neurometabolic disorder supports further
development of a reliable and affordable method of
newborn screening (e.g., via determination of a-AASA/P6C
in blood spots63), followed by a pilot study to enable timely
identification and immediate initiation of treatment to
optimize patient outcomes. We propose that all infants
presenting with unexplained seizures should be screened
for ATQ deficiency by determination of a-AASA/P6C in
urine/plasma and, if abnormal, subsequent ALDH7A1 mo-
lecular analysis (or vice versa). A vitamin B6 trial should be
provided at a low threshold. Given its amenability to
adjunct nutritional therapy and the potential positive
impact on seizure control and development, even, when
initiated at an older age, this rare metabolic epilepsy could
be considered in the older childrenwith intractable seizures
as well.
ty of British Columbia April 29, 2016.
opyright ©2016. Elsevier Inc. All rights reserved.
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